Go On - Netflix

Following the sudden death of his wife, sports radio personality Ryan King is forced to attend grief counseling. Feeling it unnecessary, he does so reluctantly, and with minimal participation, until it becomes clear that this may actually help him in unexpected ways.

Go On - Netflix

Type: Scripted

Languages: English

Status: Ended

Runtime: 30 minutes

Premier: 2012-08-08

Go On - USB On-The-Go - Netflix

USB On-The-Go, often abbreviated to USB OTG or just OTG, is a specification first used in late 2001 that allows USB devices, such as tablets or smartphones, to act as a host, allowing other USB devices, such as USB flash drives, digital cameras, mice or keyboards, to be attached to them. Use of USB OTG allows those devices to switch back and forth between the roles of host and device. For instance, a mobile phone may read from removable media as the host device, but present itself as a USB Mass Storage Device when connected to a host computer. In other words, USB OTG introduces the concept of a device performing both master and slave roles – whenever two USB devices are connected and one of them is a USB OTG device, they establish a communication link. The device controlling the link is called the master or host, while the other is called the slave or peripheral. USB OTG defines two roles for devices: OTG A-device and OTG B-device, specifying which side supplies power to the link, and which initially is the host. The OTG A-device is a power supplier, and an OTG B-device is a power consumer. In the default link configuration, the A-device acts as a USB host with the B-device acting as a USB peripheral. The host and peripheral modes may be exchanged later by using Host Negotiation Protocol (HNP). The initial role of each device is defined by which mini plug a user inserts into its receptacle.

Go On - Protocols - Netflix

The USB OTG and Embedded Host Supplement to the USB 2.0 specification introduced three new communication protocols: Attach Detection Protocol (ADP) Allows an OTG device, embedded host or USB device to determine attachment status in the absence of power on the USB bus, enabling both insertion-based behavior and the capability to display attachment status. It does so by periodically measuring the capacitance on the USB port to determine whether there is another device attached, a dangling cable, or no cable. When a large enough change in capacitance is detected to indicate device attachment, an A-device will provide power to the USB bus and look for device connection. At the same time, a B-device will generate SRP and wait for the USB bus to become powered. Session Request Protocol (SRP) Allows both communicating devices to control when the link's power session is active; in standard USB, only the host is capable of doing so. That allows fine control over the power consumption, which is very important for battery-operated devices such as cameras and mobile phones. The OTG or embedded host can leave the USB link unpowered until the peripheral (which can be an OTG or standard USB device) requires power. OTG and embedded hosts typically have little battery power to spare, so leaving the USB link unpowered helps in extending the battery runtime. Host Negotiation Protocol (HNP) Allows the two devices to exchange their host/peripheral roles, provided both are OTG dual-role devices. By using HNP for reversing host/peripheral roles, the USB OTG device is capable of acquiring control of data-transfer scheduling. Thus, any OTG device is capable of initiating data-transfer over USB OTG bus. The latest version of the supplement also introduced HNP polling, in which the host device periodically polls the peripheral during an active session to determine whether it wishes to become a host. The main purpose of HNP is to accommodate users who have connected the A and B devices (see below) in the wrong direction for the task they want to perform. For example, a printer is connected as the A-device (host), but cannot function as the host for a particular camera, since it does not understand the camera's representation of print jobs. When that camera knows how to talk to the printer, the printer will use HNP to switch to the slave role, with the camera becoming the host so pictures stored on the camera can be printed out without reconnecting the cables. The new OTG protocols cannot pass through a standard USB hub since they are based on electrical signaling via a dedicated wire. The USB OTG and Embedded Host Supplement to the USB 3.0 specification introduces an additional protocol, Role Swap Protocol (RSP). This achieves the same purpose as HNP (i.e., role swapping) by extending standard mechanisms provided by the USB 3.0 specification. Products following the USB OTG and Embedded Host Supplement to the USB 3.0 specification are also required to follow the USB 2.0 supplement in order to maintain backwards compatibility. SuperSpeed OTG devices (SS-OTG) are required to support RSP. SuperSpeed Peripheral Capable OTG devices (SSPC-OTG) are not required to support RSP since they can only operate at SuperSpeed as a peripheral; they have no SuperSpeed host and so can only role swap using HNP at USB 2.0 data rates.

Go On - References - Netflix

Pages